Tuesday, April 7, 2009

Finding a fossil and filling a gap: The story of Lyncina onkastoma Yates, 2009

February saw the release of my second paper on the fossil cowry shells of Australia. This one is potentially more interesting for it deals with some of the oldest fossils of this group in Australia and thus sheds some light (admittedly not too much) on the somewhat mysterious origins of the southern Australian endemics.

The modern Australian cowrie fauna is divisible into two great provinces: Those from the north and those from the south. The tropical northern fauna is just a subset of the tropical indopacific fauna and displays little in the way of endemicity. In the south however we have a range of distinctive clades that are endemic to the region. Each of these clades have been given their own genus name: Umbilia, Zoila, Austrocypraea (now a subgenus of Lyncina) and Notocypraea. Notoluponia is a fifth endemic southern Australian cowrie clade but is unfortunately extinct. Phylogenetic analysis has shown that these lineages are not each others closest relatives amongst cowries but each shares relationships with other non-Australian cowrie groups. When did these lineages arrive in Australia and where did they come from? These apparently simple questions are quite difficult to answer. Firstly the fossil record of cowries in Australia is almost entirely restricted to the last half of the Cenozoic. Until recently the oldest cowries did not appear until right at the end of the Oligocene Epoch (about 23 million years ago) whereas the cowrie elsewhere in the world cowries belonging to modern genera can be found back as far as the Eocene and other cowries go back into the Cretaceous. What is more the oldest cowries Australian endemic cowries were clearly members of the endemic lineages and betray little of their origins. Why is this so? Perhaps cowries enterered southern Australia during the early Oligocene. This represents a ‘black hole’ in our record of molluscs in Southern Australia. We have good molluscan faunas from the late Eocene (about 35 million years old) but virtually nothing in the 12 million years or so between these and the late Oligocene appearances. Nor are there any well-preserved molluscan assemblage that fill this gap. Do we just give up at this point?
Of course not. The glaring gap in our knowledge is the result of various workers almost entirely ignoring molluscs preserved as moulds and casts, in favour of those with the original shell preserved. It is true that an original shell is a much easier object to study than a series of moulds and casts (and can be an object of great natural beauty) but if moulds and casts is all you’ve got, shouldn’t we be looking at them?

Enter the Port Willunga Formation. This is a marine unit exposed on the coast of Fleurieu Peninsula, South Australia that dates from right in the middle of that ‘black hole’ in our knowledge of molluscan faunas. It is too porous to preserve mollusc shells but moulds and casts can be found if you look in the right places. This is one of the right places:


Limestone cliffs and shorecut platform just south of the mouth of the Onkaparinga River. Image used with the kind permission of Glenn Alderson. You can see more of Glenn’s pictures here.

Isn’t it beautiful? The Fleurieu coast is full of wonderful little beaches like this one. Apart from fantastic swimming, snorkeling and diving they also have fossils! Wow, who could ask for more? So when spending time with my family in Adelaide I always try to get down to some of the nearby fossil sites.
Late one afternoon when returning from further afield, my father and I stopped off at this beach (precisely for the reason of seeing if mollusc moulds and casts were preserved in the mid Oligocene rocks that crop out there). While wandering around on the rocks I happened to look down and noticed what appeared to be a cowrie internal mould sitting in its external mould. I got pretty excited straight away for I knew this was amongst the oldest known cowrie fossils found in Australia and might belong to a primitive stem-form of one of our endemic lineages. It may not be in the same league as Tiktaalik but it is nice when you set out to find something in palaeontology and you find it exactly where you were predicting it to be. The image below is actually a little volute from the same site – it gives you an idea of how unprepossessing these fossils are in the field.
Nevertheless if you collect the external mould and carefully chip as much of the apertural impression as you can away from the internal mould and glue it to the external mould, you can then take a pretty decent latex peel. This is what I did for my cowrie and this is the result.


I went back to the site two days later and found a further four specimens although none were quite as good as the first which subsequently became the holotype specimen of Lyncina (Austrocypraea) onkastoma.
It is indeed a very early member of one of our endemic lineages: Austrocypraea which I’ve talked about before on this blog. However it is a rather odd Austrocypraea, most noticeably because its fossula (see primer on cowrie shell anatomy here) is smooth and its apertural teeth are short, weak and confined to the anterior end of the shell. Such features are derived among members of Lyncina but are shared to some extent with L. (A.) archeri, the next oldest known member of L. (Austrocypraea). L. (A.) archeri dates to the earliest Miocene Epoch (about 22 million years old) and would appear to be a close relative of L. (A.) onkastoma. If these two early Austrocypraea form a clade diagnosed by specializations not seen in later Austrocypraea, or indeed any other members of the wider Lyncina clade, then it suggests that some diversification had already gone on by the early Oligocene (the age of L. (A.) onkastoma) and that we can expect to find more cowrie species in the Oligocene of South Australia – if only we take the time to look.

Yates, A.M. (2009) The oldest South Australian cowries (Gastropoda: Cypraeidae) from the Paleogene of the St Vincent Basin. Alcheringa 33, 23-31.

No comments: